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Abstract
For any sequence {bn}, the Smarandache-Pascal derived sequence {Tn} of {bn} is
defined as T1 = b1, T2 = b1 + b2, T3 = b1 + 2b2 + b3, generally, Tn+1 =

∑n
k=0

(n
k

) · bk+1 for
all n ≥ 2, where

(n
k

)
= n!

k!(n–k)! is the combination number. In reference (Murthy and
Ashbacher in Generalized Partitions and New Ideas on Number Theory and
Smarandache Sequences, 2005), authors proposed a series of conjectures related to
Fibonacci numbers and its Smarandache-Pascal derived sequence, one of them is
that if {bn} = {F1, F9, F17, . . .}, then we have the recurrence formula
Tn+1 = 49 · (Tn – Tn–1), n ≥ 2. The main purpose of this paper is using the elementary
method and the properties of the second-order linear recurrence sequence to study
these problems and to prove a generalized conclusion.
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1 Introduction
For any sequence {bn}, we define a new sequence {Tn} through the following method:
T = b, T = b + b, T = b + b + b, generally, Tn+ =

∑n
k=

(n
k
) · bk+ for all n≥ , where(n

k
)
= n!

k!(n–k)! is the combination number. This sequence is called the Smarandache-Pascal
derived sequence of {bn}. It was introduced by professor Smarandache in [] and studied
by some authors. For example,Murthy andAshbacher [] proposed a series of conjectures
related to Fibonacci numbers and its Smarandache-Pascal derived sequence; three of them
are as follows.

Conjecture  Let {bn} = {Fn+} = {F,F,F,F, . . .}, {Tn} be the Smarandache-Pascal de-
rived sequence of {bn}, then we have the recurrence formula

Tn+ =  · (Tn – Tn–), n ≥ .

Conjecture  Let {bn} = {Fn+} = {F,F,F,F, . . .}, {Tn} be the Smarandache-Pascal
derived sequence of {bn}, then we have the recurrence formula

Tn+ =  · (Tn – Tn–), n≥ .

Conjecture  Let {bn} = {Fn+} = {F,F,F,F, . . .}, {Tn} be the Smarandache-Pascal
derived sequence of {bn}, then we have the recurrence formula

Tn+ =  · (Tn – Tn–), n ≥ .
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Regarding these conjectures, it seems that no one has studied them yet; at least, we
have not seen any related results before. These conjectures are interesting; they reveal the
profound properties of the Fibonacci numbers. The main purpose of this paper is using
the elementarymethod and the properties of the second-order linear recurrence sequence
to study these problems and to prove a generalized conclusion. That is, we shall prove the
following.

Theorem Let {Xn} be a second-order linear recurrence sequencewith X = u,X = v,Xn+ =
aXn + bXn– for all n ≥ , where a + b > . For any positive integer d ≥ , we define the
Smarandache-Pascal derived sequence of {Xdn+} as

Tn+ =
n∑

k=

(
n
k

)
·Xdk+.

Then we have the recurrence formula

Tn+ = ( +Ad + b ·Ad–) · Tn –
(
 +Ad + b ·Ad– + (–b)d

) · Tn–,

where the sequence {An} is defined as A = , A = a, An+ = a ·An + b ·An– for all n ≥ . In
fact this time, the general term is

An =
√

a + b

[(
a +

√
a + b


)n+
–

(
a –

√
a + b


)n+]
.

Now we take b = , then from our theorem, we may immediately deduce the following
three corollaries.

Corollary  Let {Xn} be a second-order linear recurrence sequence with X = u, X = v,
Xn+ = aXn +Xn– for all n ≥ . For any even number d ≥ ,we have the recurrence formula

Tn+ = ( +Ad +Ad–) · (Tn – Tn–), n≥ .

Corollary  Let {Xn} be a second-order linear recurrence sequence with X = u, X = v,
Xn+ = aXn +Xn– for all n ≥ . For any odd number d ≥ , we have the recurrence formula

Tn+ = ( +Ad +Ad–) · Tn – (Ad +Ad–) · Tn–, n≥ ,

where

An = An(a) =
√

a + 

[(
a +

√
a + 


)n+
–

(
a –

√
a + 


)n+]
.

It is clear that Fn+(a) = An(a) is a polynomial of a; sometimes, it is called a Fibonacci
polynomial, because Fn() = Fn is Fibonacci number, see [–].
If we take a = , X = , X =  in Corollary , then {Xn} = {Fn} is a Fibonacci sequence.

Note that An = Fn+, +A +A = +F +F = ++ = , +A +A = +F +F =
 +  +  = ,  + A + A =  + F + F =  +  +  = ; from Corollary , we
may immediately deduce that the three conjectures above are true.
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If we take a = , X = P = , X = P =  and Pn+ = Pn + Pn– for all n ≥ , then Pn are
the Pell numbers. From Corollary , we can also deduce the following.

Corollary  Let Pn be the Pell number. Then for any positive integer d and

Tn+ =
n∑

k=

(
n
k

)
· Pdk+,

we have the recurrence formula

Tn+ = ( + Pd+ + Pd–) · (Tn – Tn–), n≥ .

On the other hand, from our theorem, we know that if {bn} is a second-order linear
recurrence sequence, then its Smarandache-Pascal derived sequence {Tn} is also a second-
order linear recurrence sequence.

2 Proof of the theorem
To complete the proof of our theorem, we need the following.

Lemma Let integers m ≥  and n ≥ . If the sequence {Xn} satisfying the recurrence rela-
tions Xn+ = a ·Xn+ + b ·Xn, n≥ , then we have the identity

Xm+n = An– ·Xm+ + b ·An– ·Xm,

where An is defined as A = , A = a and An+ = a ·An + b ·An– for all n ≥ , or

An =
√

a + b

[(
a +

√
a + b


)n+
–

(
a –

√
a + b


)n+]
.

Proof Now we prove this lemma by mathematical induction. Note that the recurrence
formula Xm+ = a · Xm+ + b · Xm, A = a, A = , An+ = a · An + b · An– for all n ≥ . So
Xm+ = A · Xm+ + b · A · Xm. That is, the lemma holds for n = . Since Xm+ = a · Xm+ +
b ·Xm+ = a · (a ·Xm+ + b ·Xm) + b ·Xm+ = (a + b) ·Xm+ + ba ·Xm = A ·Xm+ + bA ·Xm.
That is, the lemma holds for n = . Suppose that for all integers  ≤ n≤ k, we have Xm+n =
An– ·Xm+ + b ·An– ·Xm. Then for n = k + , from the recurrence relations for Xm and the
inductive hypothesis, we have

Xm+k+ = a ·Xm+k + b ·Xm+k–

= a · (Ak– ·Xm+ + b ·Ak– ·Xm) + b · (Ak– ·Xm+ + b ·Ak– ·Xm)

= (a ·Ak– + b ·Ak–) ·Xm+ + b · (a ·Ak– + b ·Ak–) ·Xm

= Ak ·Xm+ + b ·Ak– ·Xm–.

That is, the lemma also holds for n = k + . This completes the proof of our lemma by
mathematical induction. �
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Now, we use this lemma to complete the proof of our theorem. For any positive integer
d, from the definition of Tn and the properties of the binomial coefficient

(n
k
)
, we have

(
n – 
k

)
+

(
n – 
k – 

)
=

(n – )!
k!(n –  – k)!

+
(n – )!

(k – )!(n – k)!

=
(n – )!

(k – )!(n – k – )!

(

k
+


n – k

)
=

(
n
k

)
()

and

Tn+ =
n∑

k=

(
n
k

)
·Xdk+

= X +Xdn+ +
n–∑
k=

((
n – 
k

)
+

(
n – 
k – 

))
Xdk+

=
n–∑
k=

(
n – 
k

)
·Xdk+ +

n–∑
k=

(
n – 
k

)
·Xdk+d+ +Xdn+

= Tn +
n–∑
k=

(
n – 
k

)
Xdk+d+. ()

From the lemma, we haveXdk+d+ = Ad · Xdk+ + b · Ad– · Xdk , by () and the definition of
Tn, we may deduce that

Tn+ = Tn +
n–∑
k=

(
n – 
k

)
· (Ad ·Xdk+ + b ·Ad– ·Xdk)

= Tn +Ad ·
n–∑
k=

(
n – 
k

)
·Xdk+ + b ·Ad– ·

n–∑
k=

(
n – 
k

)
·Xdk

= ( +Ad) · Tn + b ·Ad– ·
n–∑
k=

(
n – 
k

)
·Xdk . ()

On the other hand, from the lemma, we also have Xdk+d = Ad– ·Xdk+ + b ·Ad– ·Xdk , from
this and formula (), we have

n–∑
k=

(
n – 
k

)
·Xdk = X +Xd(n–) +

n–∑
k=

(
n – 
k

)
·Xdk

= X +Xd(n–) +
n–∑
k=

((
n – 
k

)
+

(
n – 
k – 

))
·Xdk

=
n–∑
k=

(
n – 
k

)
·Xdk +

n–∑
k=

(
n – 
k

)
·Xdk+d +Xd(n–)

=
n–∑
k=

(
n – 
k

)
·Xdk +

n–∑
k=

(
n – 
k

)
· (Ad– ·Xdk+ + b ·Ad– ·Xdk)

= ( + b ·Ad–) ·
n–∑
k=

(
n – 
k

)
·Xdk +Ad– · Tn–. ()
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From (), we can also deduce that

Tn = ( +Ad) · Tn– + b ·Ad– ·
n–∑
k=

(
n – 
k

)
·Xdk . ()

Now, combining (), () and (), we may immediately get

Tn+ = ( +Ad) · Tn + b ·Ad– ·
(
( + b ·Ad–) ·

n–∑
k=

(
n – 
k

)
·Xdk +Ad– · Tn–

)

= ( +Ad) · Tn + b ·A
d– · Tn– + ( + b ·Ad–) ·

(
Tn – ( +Ad) · Tn–

)
or equivalent to

Tn+ = ( +Ad + b ·Ad–) · Tn –
(
 +Ad + b ·Ad– + b ·Ad ·Ad– – b ·A

d–
) · Tn–

= ( +Ad + b ·Ad–) · Tn –
(
 +Ad + b ·Ad– + (–b)d

) · Tn–, ()

where we have used the identity

Ad ·Ad– –A
d– =

–(–b)d–

a + b

[(
a +

√
a + b


)
+

(
a –

√
a + b


)]
+

(–b)d

a + b

= –(–b)d– · a
 + b + b
a + b

= –(–b)d–.

Now, our theorem follows from formula ().
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